Knowledge Discovery in Databases (KDD) is the process of exploring val translation - Knowledge Discovery in Databases (KDD) is the process of exploring val Indonesian how to say

Knowledge Discovery in Databases (K

Knowledge Discovery in Databases (KDD) is the process of exploring valuable, understandable and novel information from large and complex data repositories [1]. Data Mining is a part of KDD process and it performs exploratory analysis and modeling of large data using classification, association, clustering and many other algorithms. KDD process interprets the results obtained from datasets by incorporating prior knowledge. KDD process starts with establishing its goal and ends with the interpretation and evaluation of the discovered knowledge [1-3]. KDD process is iterative in nature and involves following 7 steps as shown in figure 1.

i. Domain Understanding and set KDD goals: This is the first and significant step of KDD process. It is essential for the people who perform KDD process to determine the end-user goal and to have good domain knowledge of the background in which KDD process will take place. ii. Selecting and creating target dataset: Having defined the goal, the second step is to select the target data and to create a database on which knowledge discovery process will be executed. This step involves-
 Check the availability of data.
 Obtain supplementary essential data.
Integrate all the data. This step is very important because the entire knowledge discovery process depends on the available data. Data Mining algorithms learn and explore valuable patterns from this data. Unavailability of important data leads to the failure or wrong interpretation of knowledge. Since the available data is the base of knowledge discovery model so it is essential to obtain important attributes of this data.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Knowledge Discovery in Databases (KDD) is the process of exploring valuable, understandable and novel information from large and complex data repositories [1]. Data Mining is a part of KDD process and it performs exploratory analysis and modeling of large data using classification, association, clustering and many other algorithms. KDD process interprets the results obtained from datasets by incorporating prior knowledge. KDD process starts with establishing its goal and ends with the interpretation and evaluation of the discovered knowledge [1-3]. KDD process is iterative in nature and involves following 7 steps as shown in figure 1. i. Domain Understanding and set KDD goals: This is the first and significant step of KDD process. It is essential for the people who perform KDD process to determine the end-user goal and to have good domain knowledge of the background in which KDD process will take place. ii. Selecting and creating target dataset: Having defined the goal, the second step is to select the target data and to create a database on which knowledge discovery process will be executed. This step involves-  Check the availability of data.  Obtain supplementary essential data. Integrate all the data. This step is very important because the entire knowledge discovery process depends on the available data. Data Mining algorithms learn and explore valuable patterns from this data. Unavailability of important data leads to the failure or wrong interpretation of knowledge. Since the available data is the base of knowledge discovery model so it is essential to obtain important attributes of this data.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Knowledge Discovery di Database (KDD) adalah proses mengeksplorasi informasi berharga, dimengerti dan novel dari repositori data yang besar dan kompleks [1]. Data Mining adalah bagian dari proses KDD dan melakukan analisis eksplorasi dan pemodelan data yang besar menggunakan klasifikasi, asosiasi, clustering dan banyak algoritma lainnya. Proses KDD menafsirkan hasil yang diperoleh dari dataset dengan memasukkan pengetahuan sebelumnya. Proses KDD dimulai dengan membangun tujuan dan berakhir dengan interpretasi dan evaluasi pengetahuan ditemukan [1-3]. Proses KDD adalah berulang di alam dan melibatkan berikut 7 langkah seperti pada gambar 1. i. Domain Memahami dan menetapkan tujuan KDD: Ini adalah langkah pertama dan signifikan dari proses KDD. Hal ini penting bagi orang-orang yang melakukan proses KDD untuk menentukan tujuan akhir-pengguna dan memiliki pengetahuan domain yang baik dari latar belakang di mana proses KDD akan berlangsung. ii. Memilih dan menciptakan dataset Target: Setelah mendefinisikan tujuan, langkah kedua adalah memilih data target dan untuk membuat database yang proses penemuan pengetahuan akan dieksekusi. Langkah involves- ini  Periksa ketersediaan data.  Mendapatkan data penting tambahan. Mengintegrasikan semua data. Langkah ini sangat penting karena proses penemuan pengetahuan seluruh tergantung pada data yang tersedia. Algoritma Data Mining belajar dan mengeksplorasi pola berharga dari data ini. Tidak tersedianya data penting mengarah pada kegagalan atau interpretasi yang salah dari pengetahuan. Karena data yang tersedia adalah basis pengetahuan Model penemuan sehingga sangat penting untuk mendapatkan atribut penting dari data ini.




Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: