ABSTRACTThe objective of this research was to determine the physical a translation - ABSTRACTThe objective of this research was to determine the physical a Indonesian how to say

ABSTRACTThe objective of this resea

ABSTRACT
The objective of this research was to determine the physical and mechanical properties of oriented strandboard (OSB) using strands of Cupressus glauca Lam., before and after a thermal treatment, as well as to evaluate the susceptibility of the boards to fungi attack. Boards with nominal density of 0.70 g/cm3 were produced with 5% and 8% of urea-formaldehyde (UF) resin. Physical and mechanical properties were evaluated according to ASTM D 1037 (1991) standard and compared with CSA O437.0 and ANSI A.208.1 standards. All mechanical properties were higher than those values required by both standards, except the modulus of elasticity in parallel axis. The thermal treatment slightly reduced the modulus of elasticity and stress at proportional limit, both in perpendicular axis, however improved significantly dimensional stability. Dimensional stability of the treated OSB was improved at the lower resin level but did not reach the maximum value required by the Canadian standard. Biological assay showed that heat-treated cypress OSB exposed to P. sanguineus reduced mass loss from 39% to 50%, while for G. trabeum the reduction was from 40% to 49%. Post thermal treatment of manufactured OSB (190°C, 720 s) can be the recommended method to reduce the hygroscopicity without great effect on mechanical properties and to protect panels against these fungi.

Keywords: oriented strandboard, material properties, thermal treatment, biodeterioration.

INTRODUCTION
Plywood and oriented strandboard (OSB) panels are very similar in the conception of reducing the dimensional stability and anisotropy of the wood, but raw material, manufacturing process and mechanical properties are very different. The disadvantage of OSB compared to plywood is the higher dimensional instability. To improve this property it is necessary to reduce the water adsorption of the wood and release the stress imposed during the hot-pressing process. Some studies have evaluated a method which can do this in an one-way step: the thermal treatment applied after the consolidation of the panel.

One of the first studies to evaluate this kind of treatment was conducted by Roffael and Rauch (1973). They evaluated di-isocyanate bonded particleboards exposed to 200°C for 15 to 60 minutes and the results showed a decrease in thickness swelling (TS) and water absorption (WA). The modulus of rupture (MOR) was reduced up to 20%. Shen (1974) exposed urea-formaldehyde bonded panels from 260 to 343°C during two to four seconds pressed from 200 to 600 psi. No significant change in MOR and shear strength was observed. Hsu et al. (1989) heat-treated phenol-formaldehyde bonded waferboard at 240°C during 2.67, 4.16 and 10.50 minutes and verified an enhancement in TS and a slightly deleterious effect on the MOR. They also concluded that stiffness is more affected by thermal treatment than strength. Suchsland and Xu (1991) also studied yellow-poplar flakeboard under 232°C during 15 minutes and concluded that TS value was clearly diminished. It can be observed that there exists no work concerning the utilization of thermal treatment on UF bonded wood panels, probably because this type of resin can be degraded under these conditions.

On the other hand, it is very well known that thermal treatment has a deleterious effect on mechanical properties of wood. According to Bengtsson et al. (2002), the heat-treatment decreases the strength and the stiffness of the wood. However, the extent of loss may vary either by the heat-treatment schedule or the wood species. Softwoods have shown larger reductions in strength than hardwoods. Usually, the bending and tensile strength of heat-treated material is reported to drop between 10% and 30%. Goroyias and Hale (2002) studied the effect of heat treatment from 200°C to 260°C with increments of 10°C during 20 minutes on the mechanical and physical properties of strands. They concluded that high temperature treatments resulted in significant reductions in thickness swelling of wood strands as well as in modulus of rupture and modulus of elasticity by 20%.

A very promising method to improve dimensional stability has been studied in Brazil since 2001. It is a kind of post-thermal treatment where panel is re-pressed and heated, with pressure enough to ensure contact between the panel and the press platens. Recently, Del Menezzi and Tomaselli (2006) employed this treatment (250°C, 240 s, 420 s, 600 s) in a single layered OSB from Pinus taeda, with 0.8 g/cm3 nominal density and 8% of phenol-formaldehyde resin, and observed reduction in TS, equilibrium moisture content (EMC) and permanent thickness swelling (PTS). Del Menezzi (2004) used this same method to treat commercial pine OSB bonded with phenol-formaldehyde in surface layer and di-isocyanate in the core layer at 190°C and 220°C during 720 s, 960 s, and 1200 s.

Thickness swelling decreased in 39% and 25%, after 2 and 24 h of water immersion, respectively, while WA was reduced in average 31
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
ABSTRACTThe objective of this research was to determine the physical and mechanical properties of oriented strandboard (OSB) using strands of Cupressus glauca Lam., before and after a thermal treatment, as well as to evaluate the susceptibility of the boards to fungi attack. Boards with nominal density of 0.70 g/cm3 were produced with 5% and 8% of urea-formaldehyde (UF) resin. Physical and mechanical properties were evaluated according to ASTM D 1037 (1991) standard and compared with CSA O437.0 and ANSI A.208.1 standards. All mechanical properties were higher than those values required by both standards, except the modulus of elasticity in parallel axis. The thermal treatment slightly reduced the modulus of elasticity and stress at proportional limit, both in perpendicular axis, however improved significantly dimensional stability. Dimensional stability of the treated OSB was improved at the lower resin level but did not reach the maximum value required by the Canadian standard. Biological assay showed that heat-treated cypress OSB exposed to P. sanguineus reduced mass loss from 39% to 50%, while for G. trabeum the reduction was from 40% to 49%. Post thermal treatment of manufactured OSB (190°C, 720 s) can be the recommended method to reduce the hygroscopicity without great effect on mechanical properties and to protect panels against these fungi.Keywords: oriented strandboard, material properties, thermal treatment, biodeterioration.
INTRODUCTION
Plywood and oriented strandboard (OSB) panels are very similar in the conception of reducing the dimensional stability and anisotropy of the wood, but raw material, manufacturing process and mechanical properties are very different. The disadvantage of OSB compared to plywood is the higher dimensional instability. To improve this property it is necessary to reduce the water adsorption of the wood and release the stress imposed during the hot-pressing process. Some studies have evaluated a method which can do this in an one-way step: the thermal treatment applied after the consolidation of the panel.

One of the first studies to evaluate this kind of treatment was conducted by Roffael and Rauch (1973). They evaluated di-isocyanate bonded particleboards exposed to 200°C for 15 to 60 minutes and the results showed a decrease in thickness swelling (TS) and water absorption (WA). The modulus of rupture (MOR) was reduced up to 20%. Shen (1974) exposed urea-formaldehyde bonded panels from 260 to 343°C during two to four seconds pressed from 200 to 600 psi. No significant change in MOR and shear strength was observed. Hsu et al. (1989) heat-treated phenol-formaldehyde bonded waferboard at 240°C during 2.67, 4.16 and 10.50 minutes and verified an enhancement in TS and a slightly deleterious effect on the MOR. They also concluded that stiffness is more affected by thermal treatment than strength. Suchsland and Xu (1991) also studied yellow-poplar flakeboard under 232°C during 15 minutes and concluded that TS value was clearly diminished. It can be observed that there exists no work concerning the utilization of thermal treatment on UF bonded wood panels, probably because this type of resin can be degraded under these conditions.

On the other hand, it is very well known that thermal treatment has a deleterious effect on mechanical properties of wood. According to Bengtsson et al. (2002), the heat-treatment decreases the strength and the stiffness of the wood. However, the extent of loss may vary either by the heat-treatment schedule or the wood species. Softwoods have shown larger reductions in strength than hardwoods. Usually, the bending and tensile strength of heat-treated material is reported to drop between 10% and 30%. Goroyias and Hale (2002) studied the effect of heat treatment from 200°C to 260°C with increments of 10°C during 20 minutes on the mechanical and physical properties of strands. They concluded that high temperature treatments resulted in significant reductions in thickness swelling of wood strands as well as in modulus of rupture and modulus of elasticity by 20%.

A very promising method to improve dimensional stability has been studied in Brazil since 2001. It is a kind of post-thermal treatment where panel is re-pressed and heated, with pressure enough to ensure contact between the panel and the press platens. Recently, Del Menezzi and Tomaselli (2006) employed this treatment (250°C, 240 s, 420 s, 600 s) in a single layered OSB from Pinus taeda, with 0.8 g/cm3 nominal density and 8% of phenol-formaldehyde resin, and observed reduction in TS, equilibrium moisture content (EMC) and permanent thickness swelling (PTS). Del Menezzi (2004) used this same method to treat commercial pine OSB bonded with phenol-formaldehyde in surface layer and di-isocyanate in the core layer at 190°C and 220°C during 720 s, 960 s, and 1200 s.

Thickness swelling decreased in 39% and 25%, after 2 and 24 h of water immersion, respectively, while WA was reduced in average 31
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
ABSTRAK
Tujuan dari penelitian ini adalah untuk menentukan sifat fisik dan mekanik strandboard berorientasi (OSB) menggunakan helai Cupressus glauca Lam., Sebelum dan setelah perlakuan termal, serta untuk mengevaluasi kerentanan papan untuk menyerang jamur. Papan dengan kepadatan nominal 0,70 g / cm3 diproduksi dengan 5% dan 8% dari urea-formaldehida (UF) resin. Sifat fisik dan mekanik dievaluasi sesuai dengan ASTM D 1037 (1991) standar dan dibandingkan dengan CSA O437.0 dan standar A.208.1 ANSI. Semua sifat mekanik yang lebih tinggi dari nilai-nilai yang dibutuhkan oleh kedua standar, kecuali modulus elastisitas poros paralel. Perlakuan termal sedikit berkurang modulus elastisitas dan stres pada batas proporsional, baik dalam sumbu tegak lurus, namun peningkatan stabilitas dimensi secara signifikan. Stabilitas dimensi dari OSB diperlakukan diperbaiki di tingkat resin yang lebih rendah tetapi tidak mencapai nilai maksimum yang diperlukan oleh standar Kanada. Uji biologis menunjukkan bahwa perlakuan panas cypress OSB terkena P. sanguineus berkurang kehilangan massa dari 39% menjadi 50%, sedangkan untuk G. trabeum pengurangan itu dari 40% menjadi 49%. Pasca pengobatan termal diproduksi OSB (190 ° C, 720 s) dapat menjadi metode yang direkomendasikan untuk mengurangi hygroscopicity tanpa efek yang besar pada sifat mekanik dan untuk melindungi panel terhadap jamur ini. Kata kunci: berorientasi strandboard, sifat material, perlakuan panas, biodeterioration. PENDAHULUAN Plywood dan strandboard berorientasi (OSB) panel yang sangat mirip dalam konsepsi mengurangi stabilitas dimensi dan anisotropi dari kayu, tapi bahan baku, proses produksi dan sifat mekanik yang sangat berbeda. Kerugian dari OSB dibandingkan dengan plywood adalah ketidakstabilan dimensi yang lebih tinggi. Untuk meningkatkan properti ini perlu untuk mengurangi adsorpsi air dari kayu dan melepaskan stres yang dikenakan selama proses hot-menekan. Beberapa penelitian telah mengevaluasi metode yang dapat melakukan hal ini dalam langkah satu arah: perlakuan termal diterapkan setelah konsolidasi panel. Salah satu penelitian pertama untuk mengevaluasi jenis perawatan dilakukan oleh Roffael dan Rauch (1973). Mereka mengevaluasi di-isosianat terikat particleboards terkena 200 ° C selama 15 sampai 60 menit dan hasilnya menunjukkan penurunan pembengkakan ketebalan (TS) dan penyerapan air (WA). Modulus rupture (MOR) berkurang hingga 20%. Shen (1974) terkena urea-formaldehida terikat panel 260-343 ° C selama 2-4 detik ditekan 200-600 psi. Tidak ada perubahan signifikan dalam MOR dan kekuatan geser diamati. Hsu et al. (1989) fenol-formaldehida dipanaskan terikat waferboard pada 240 ° C selama 2,67, 4,16 dan 10,50 menit dan diverifikasi suatu peningkatan dalam TS dan efek yang sedikit merusak pada MOR. Mereka juga menyimpulkan bahwa kekakuan lebih dipengaruhi oleh perlakuan termal dari kekuatan. Suchsland dan Xu (1991) juga mempelajari kuning-poplar flakeboard bawah 232 ° C selama 15 menit dan menyimpulkan bahwa nilai TS jelas berkurang. Hal ini dapat diamati bahwa ada tidak ada pekerjaan mengenai pemanfaatan perlakuan termal pada panel kayu UF terikat, mungkin karena jenis resin dapat terdegradasi pada kondisi ini. Di sisi lain, itu sangat terkenal bahwa pengobatan termal memiliki merusak berpengaruh pada sifat mekanik kayu. Menurut Bengtsson et al. (2002), panas-pengobatan mengurangi kekuatan dan kekakuan kayu. Namun, besarnya kerugian dapat bervariasi baik dengan jadwal perlakuan panas atau spesies kayu. Kayu lunak telah menunjukkan penurunan lebih besar dalam kekuatan dari kayu keras. Biasanya, kekuatan lentur dan tarik bahan dipanaskan dilaporkan menurun antara 10% dan 30%. Goroyias dan Hale (2002) meneliti efek dari perlakuan panas dari 200 ° C sampai 260 ° C dengan penambahan sebesar 10 ° C selama 20 menit pada sifat mekanik dan fisik helai. Mereka menyimpulkan bahwa pengobatan suhu tinggi mengakibatkan penurunan yang signifikan pada pembengkakan ketebalan helai kayu serta modulus rupture dan modulus elastisitas sebesar 20%. Sebuah metode yang sangat menjanjikan untuk meningkatkan stabilitas dimensi telah dipelajari di Brazil sejak tahun 2001. Ini adalah jenis perawatan pasca-thermal di mana panel kembali ditekan dan dipanaskan, dengan tekanan yang cukup untuk memastikan kontak antara panel dan platens pers. Baru-baru ini, Del Menezzi dan Tomaselli (2006) digunakan pengobatan ini (250 ° C, 240 s, 420 s, 600 s) dalam OSB berlapis tunggal dari Pinus taeda, dengan 0,8 g / cm3 kepadatan nominal dan 8% dari resin fenol-formaldehida , dan mengamati pengurangan TS, konten keseimbangan air (EMC) dan ketebalan permanen bengkak (PTS). Del Menezzi (2004) menggunakan metode yang sama untuk mengobati OSB pinus komersial terikat dengan fenol-formaldehida dalam lapisan permukaan dan di-isosianat dalam lapisan inti pada 190 ° C dan 220 ° C selama 720 s, 960 s, dan 1200 s. Tebal pembengkakan menurun di 39% dan 25%, setelah 2 dan 24 jam perendaman air, masing-masing, sementara WA berkurang rata-rata 31












Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: