2.4 Reducing Data and Visual ComplexityThe problem of visualizing mult translation - 2.4 Reducing Data and Visual ComplexityThe problem of visualizing mult Indonesian how to say

2.4 Reducing Data and Visual Comple

2.4 Reducing Data and Visual Complexity
The problem of visualizing multimodal social network is similar to “the curse of dimensionality” [6], which is a problem occurring when multidimensional (not multimodal) data are projected onto a 2D or 3D display. Such projection easily generates clutter, distortion, and ensuing confusion. To make matters worse, visualizing a unimodal social network often consumes two spatial dimensions while visualizing a uni-dimension data often consumes only one spatial dimension.
Thus, it is not possible to directly borrow ideas from multidimensional visualization to address the challenges of multimodal network visualization. However, we can draw upon lessons learned from previous work for overcoming the curse of dimensionality. A review reveals the following strategies:
Divide and Conquer. Based on subdividing a problem intosmaller components until each component is small enough to easily solve, this is one of the core strategies in many sub-disciplines of computer science, and the same principle has been applied to visualize multidimensional data. However, divide and conquer only visualizes asubset of data at a time, making the global view difficult to understand. Examples include scatterplot matrices (SPLOMs) [25], graph exploration with degree-of-interest [45], and Worlds within Worlds [18].
Distortion. In order to show the overall picture more effectively, some techniques distort the orthogonal relationships between dimensions, thereby gaining compactness by sacrificing familiarity. Examples include parallel coordinates [29], star coordinates [31], and Flexible LINked Axes (FLINA) [12].
Compression. When the amount of data and the number of dimensions surpass a certain level, the information may be drastically compressed using meta-dimensional information to show the overview at the cost of information loss. Examples include Principal Component Analysis [25], multidimensional scaling [15], and Scagnostics [48].
Metaphor. When compression and distortion cause a visualization to become difficult to understand, some metaphors that are readily detectable (e.g., human faces) or understandable (e.g., a magnet metaphor) can help users deal with the complexity. Examples include
Chernoff faces [11] and Dust & Magnet [50]. One interesting pattern common to these strategies is the trade-off between different elements of the visualization. If one wants to show
more data or attributes either through distortion or compression strategies, the resulting visualization becomes visually complex. If one would like to lower complexity through the divide and conquer strategy, the amount of data shown in a single view will decrease. The key
issue is striking a balance between these two factors
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
2.4 Reducing Data and Visual ComplexityThe problem of visualizing multimodal social network is similar to “the curse of dimensionality” [6], which is a problem occurring when multidimensional (not multimodal) data are projected onto a 2D or 3D display. Such projection easily generates clutter, distortion, and ensuing confusion. To make matters worse, visualizing a unimodal social network often consumes two spatial dimensions while visualizing a uni-dimension data often consumes only one spatial dimension.Thus, it is not possible to directly borrow ideas from multidimensional visualization to address the challenges of multimodal network visualization. However, we can draw upon lessons learned from previous work for overcoming the curse of dimensionality. A review reveals the following strategies:Divide and Conquer. Based on subdividing a problem intosmaller components until each component is small enough to easily solve, this is one of the core strategies in many sub-disciplines of computer science, and the same principle has been applied to visualize multidimensional data. However, divide and conquer only visualizes asubset of data at a time, making the global view difficult to understand. Examples include scatterplot matrices (SPLOMs) [25], graph exploration with degree-of-interest [45], and Worlds within Worlds [18].Distortion. In order to show the overall picture more effectively, some techniques distort the orthogonal relationships between dimensions, thereby gaining compactness by sacrificing familiarity. Examples include parallel coordinates [29], star coordinates [31], and Flexible LINked Axes (FLINA) [12].Compression. When the amount of data and the number of dimensions surpass a certain level, the information may be drastically compressed using meta-dimensional information to show the overview at the cost of information loss. Examples include Principal Component Analysis [25], multidimensional scaling [15], and Scagnostics [48].Metaphor. When compression and distortion cause a visualization to become difficult to understand, some metaphors that are readily detectable (e.g., human faces) or understandable (e.g., a magnet metaphor) can help users deal with the complexity. Examples includeChernoff faces [11] and Dust & Magnet [50]. One interesting pattern common to these strategies is the trade-off between different elements of the visualization. If one wants to showmore data or attributes either through distortion or compression strategies, the resulting visualization becomes visually complex. If one would like to lower complexity through the divide and conquer strategy, the amount of data shown in a single view will decrease. The keyissue is striking a balance between these two factors
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
2.4 Mengurangi Data dan Visual Kompleksitas
Masalah visualisasi jaringan sosial multimodal mirip dengan "kutukan dimensi" [6], yang merupakan masalah terjadi ketika multidimensi data (tidak multimodal) diproyeksikan ke layar 2D atau 3D. Proyeksi tersebut dengan mudah menghasilkan kekacauan, distorsi, dan berikutnya kebingungan. Untuk membuat keadaan menjadi lebih buruk, memvisualisasikan jaringan sosial unimodal sering mengkonsumsi dua dimensi spasial sementara memvisualisasikan data uni-dimensi sering mengkonsumsi hanya satu dimensi ruang.
Jadi, tidak mungkin untuk secara langsung meminjam ide dari visualisasi multidimensi untuk mengatasi tantangan visualisasi jaringan multimoda . Namun, kita dapat memanfaatkan pelajaran dari pekerjaan sebelumnya untuk mengatasi kutukan dimensi. Ulasan A mengungkapkan strategi berikut:
Divide and Conquer. Berdasarkan pengelompokan masalah intosmaller komponen sampai setiap komponen cukup kecil untuk dengan mudah memecahkan, ini adalah salah satu strategi inti dalam banyak sub-disiplin dari ilmu komputer, dan prinsip yang sama telah diterapkan untuk memvisualisasikan data multidimensi. Namun, membagi dan menaklukkan hanya visualisasi asubset data pada satu waktu, membuat global pandangan sulit untuk memahami. Contohnya termasuk matriks sebar (SPLOMs) [25], grafik eksplorasi dengan gelar-dari-bunga [45], dan Worlds dalam Dunia [18].
Distortion. Untuk menampilkan gambar secara keseluruhan lebih efektif, beberapa teknik mendistorsi hubungan orthogonal antara dimensi, sehingga mendapatkan kekompakan dengan pengorbanan fi cing keakraban. Contohnya termasuk koordinat paralel [29], koordinat star [31], dan fleksibel terkait Axes (FLINA) [12].
Kompresi. Ketika jumlah data dan jumlah dimensi melampaui tingkat tertentu, informasi tersebut dapat secara drastis dikompresi menggunakan informasi meta-dimensi untuk menunjukkan gambaran pada biaya kehilangan informasi. Contohnya termasuk Analisis Principal Component [25], skala multidimensi [15], dan Scagnostics [48].
Metafora. Bila kompresi dan distorsi menyebabkan visualisasi untuk menjadi sulit untuk memahami, beberapa metafora yang mudah terdeteksi (misalnya, wajah manusia) atau dimengerti (misalnya, metafora magnet) dapat membantu pengguna menangani kompleksitas. Contohnya termasuk
Chernoff menghadapi [11] dan Debu & Magnet [50]. Salah satu pola yang menarik umum untuk strategi ini adalah trade-off antara unsur-unsur yang berbeda dari visualisasi. Jika seseorang ingin menunjukkan
lebih banyak data atau atribut baik melalui distorsi atau kompresi strategi, visualisasi yang dihasilkan menjadi visual yang kompleks. Jika seseorang ingin menurunkan kompleksitas melalui membagi dan menaklukkan strategi, jumlah data yang ditampilkan dalam satu tampilan akan menurun. Kunci
masalah mencolok keseimbangan antara dua faktor ini
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: