Abstract An environmentally benign and facile bilayer coating comprised of graphene oxide (GO) and acrylic polymer is fabricated over cupronickel sample using electrophoretic deposition followed by dip coating. The infrared, Raman, and field emission scanning electron microscopy (FESEM) studies of the bilayer coating confirm the noncovalent functionalization of GO through H-bonding with acrylic polymer, reduction in local defects in GO structure, and distorted spherical void peripheries of polymer coating, respectively. The FESEM cross-sectional analysis showed that the coating thickness is 5–6 lm. The bilayercoated sample showed a three- to fourfold increase inthe corrosion resistance, as compared to GO-alonecoated sample in 3.5% (w/v) NaCl electrolyte, which is attributed to the reduction in the local defects in GO coating and the galvanic coupling between the GO and sample surface. The GO sheets make the diffusion pathway of corrosive media more tortuous for corrosive ions to reach the metal surface. The lower anodic current density observed with the new bilayer coating after 30 days of exposure confirms the active corrosion protection. The coating was intact and stable after 30 days of exposure in chloride medium with a water uptake of about 32.7%.