Results (
Indonesian) 1:
[Copy]Copied!
As an example, consider the 32-bit virtual address 0x00403004 (4,206,596 decimal), which is 12,292 bytes into the data. This virtual address corresponds to PT1 = 1, PT2 = 2, and Offset = 4. The MMU first uses PT1 to index into the lop-level page table and obtain entry 1, which corresponds to addresses 4M to 8M. It then uses PT2 to index into the second-level page table just found and extract entry 3, which corresponds to addresses 12288 to 16383 within its 4M chunk (i.e., absolute addresses 4,206,592 to 4,210,687). This entry contains the page frame number of the page containing virtual address 0x00403004. If that page is not in memory, the Present/absent bit in the page table entry will be zero, causing a page fault. If the page is in memory, the page frame number taken from the second-level page table is combined with the offset (4) to construct a physical address. This address is put on the bus and sent to memory.The interesting thing to note about Fig. 4-12 is that although the address space contains over a million pages, only four page tables are actually needed: the top-level table, and the second-level tables for 0 to 4M, 4M to 8M, and the top 4M. The Present/absent bits in 1021 entries of the top-level page table are set to 0, forcing a page fault if they are ever accessed. Should this occur, the operating system will notice that the process is trying to reference memory that it is not supposed to and will take appropriate action, such as sending it a signal or killing it. In this example we have chosen round numbers for the various sizes and have picked PT1 equal to PT2 but in actual practice other values are also possible, of course.The two-level page table system of Fig. 4-12 can be expanded to three, four, or more levels. Additional levels give more flexibility, but it is doubtful that the additional complexity is worth it beyond three levels.
Being translated, please wait..
