Comparison between our relationship and those presentedby Malamud et a translation - Comparison between our relationship and those presentedby Malamud et a Indonesian how to say

Comparison between our relationship

Comparison between our relationship and those presented
by Malamud et al. (1998) suggests that our measured frequency–
size distribution is similar to those of other forest fire
regimes, whilst the exponent value close to 1.0 means that
small and large fires contribute roughly equally to the total
area burned (e.g., fires of area A occur roughly two orders of
magnitude more frequently than fires of size 100A, so both
contribute roughly equally to the total burnt area). Table 5
shows the mapped forest fires categorized into four size
classes, indicating that in the case of the 2001 fires mapped
by SPOT VGT, the 9 largest files and 2497 smallest fires
contribute almost equally to the total burnt area. However, the
extreme size of the largest fires means that the largest 1% of
fires contribute 42% of the total area burned.
In addition to the above analysis, the key use of the
power law shown in Fig. 8 is that it allows us to predict how
many individual fires burning less than 2 km2 are likely to have occurred in 2001 and yet were not mapped by our
methodology (which limits detection to fires of area 2 km2
or greater). The prediction is that there will be 6554 fires
larger than 1 km2, and because our VGT-based methodology
maps 2764 fires larger than 2 km2, we estimate that 3790
fires having an area of 1–2 km2 have been missed by our
SPOT VGT-based method. We do not predict the likely
number of fires smaller than 1 km2 because Ricotta et al.
(2001) indicate that different processes maybe controlling
the frequency and size of these sub-kilometer scale fires
than are controlling the larger fires typically observed by
VGT, meaning extrapolation of the power law to fires much
smaller than those observed could produce highly inaccurate
estimates. According to results shown in Ricotta et al., the
frequency of the very smallest fires will, anyway, be
significantly lower than that predicted by extrapolation of
the frequency–size distribution, further supporting the decision
to neglect them from the analysis.
Using these frequency–size data, we estimate the actual
area burned in the Russian Federation for 2001 to be 41,782
km2 (measured) and 3790 km2 (predicted); making a total of
45,572 km2, of which 75% occurred in forests. Using Eq.
(6) to account for the apparent underestimate of burnt area
by VGT when compared to ETM+ provides the final
corrected burnt area estimate of 51,546 km2, with 38,512
km2 in forest and 13,034 km2 in nonforest. This equates to
0.5% of the total area of forest recorded in the Russian Federation by the USGS Global Land Cover Database
(Table 4; Brown et al., 1999).
7. Carbon emission estimates
We used our measurements of monthly burned area to
estimate the direct carbon emissions from the areas of
Russian forest burned in 2001. Isaev et al. (2002) and
Redmond, Winne, Opitz, and Mangrich (2002) provide
recent evidence that the severity of the burn may itself be
detectable from remote sensing. However, whilst very
promising, these techniques are new and currently have
only been applied to high spatial resolution imagery. It
remains to be seen whether detailed testing can prove that
similar approaches applied to low or moderate spatial
resolution data will allow burn severity to be mapped over
the full range of environmental conditions found across
Russia. In the absence of such a remote sensing approach,
we follow other recent studies by assuming a range of
possible burn severities to estimate the minimum and
maximum levels of carbon emission from the 2001 fires.
Specifically, we follow Conard and Ivanova (1997) and
Conard et al. (2002) in examining two scenarios, that burns
during the season were dominated by severe burning conditions
(50% of burnt area in crown fires, 30% in moderateseverity
surface fires, and 20% in low-severity surface fires)
or moderate burning conditions (20% crown fires, 60%
moderate-severity surface fires and 20% low-severity surface
fires). Conard et al. (2002) report that mean levels of
carbon emission for crown fires, moderate-severity surface
fires, and low-severity surface fires are respectively 22.5,
8.6, and 2.3 Mg/ha, based on weighted carbon storage in
different biomass and forest litter components (Alexeyev &
Birdsey, 1994; Alexeyev, Birdsey, Stakanov, & Korotkov,
1995). Using these data with our VGT-based measurements
allows us to estimate carbon emissions over the 2001 fire season on a monthly basis (Fig. 9). Note that the correction
factor derived from comparison between the VGT burnt area
map and the ETM+ data has been applied to our VGT
measurements of monthly burned area shown in Table 4 and
that we include only areas of burnt forest in the calculation.
Calculated carbon emissions for 2001 related to forest
burning are 36.0 Mt for the moderate burning scenario
and 50.8 Mt for the severe burning scenario. Given the
climate prevalent in 2001, it seems more likely that moderate
burning conditions predominated.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Comparison between our relationship and those presentedby Malamud et al. (1998) suggests that our measured frequency–size distribution is similar to those of other forest fireregimes, whilst the exponent value close to 1.0 means thatsmall and large fires contribute roughly equally to the totalarea burned (e.g., fires of area A occur roughly two orders ofmagnitude more frequently than fires of size 100A, so bothcontribute roughly equally to the total burnt area). Table 5shows the mapped forest fires categorized into four sizeclasses, indicating that in the case of the 2001 fires mappedby SPOT VGT, the 9 largest files and 2497 smallest firescontribute almost equally to the total burnt area. However, theextreme size of the largest fires means that the largest 1% offires contribute 42% of the total area burned.In addition to the above analysis, the key use of thepower law shown in Fig. 8 is that it allows us to predict howmany individual fires burning less than 2 km2 are likely to have occurred in 2001 and yet were not mapped by ourmethodology (which limits detection to fires of area 2 km2or greater). The prediction is that there will be 6554 fireslarger than 1 km2, and because our VGT-based methodologymaps 2764 fires larger than 2 km2, we estimate that 3790fires having an area of 1–2 km2 have been missed by ourSPOT VGT-based method. We do not predict the likelynumber of fires smaller than 1 km2 because Ricotta et al.(2001) indicate that different processes maybe controllingthe frequency and size of these sub-kilometer scale firesthan are controlling the larger fires typically observed byVGT, meaning extrapolation of the power law to fires muchsmaller than those observed could produce highly inaccurateestimates. According to results shown in Ricotta et al., thefrequency of the very smallest fires will, anyway, besignificantly lower than that predicted by extrapolation ofthe frequency–size distribution, further supporting the decisionto neglect them from the analysis.Using these frequency–size data, we estimate the actualarea burned in the Russian Federation for 2001 to be 41,782km2 (measured) and 3790 km2 (predicted); making a total of45,572 km2, of which 75% occurred in forests. Using Eq.(6) to account for the apparent underestimate of burnt areaby VGT when compared to ETM+ provides the finalcorrected burnt area estimate of 51,546 km2, with 38,512km2 in forest and 13,034 km2 in nonforest. This equates to0.5% of the total area of forest recorded in the Russian Federation by the USGS Global Land Cover Database(Table 4; Brown et al., 1999).7. Carbon emission estimatesWe used our measurements of monthly burned area toestimate the direct carbon emissions from the areas ofRussian forest burned in 2001. Isaev et al. (2002) andRedmond, Winne, Opitz, and Mangrich (2002) providerecent evidence that the severity of the burn may itself bedetectable from remote sensing. However, whilst verypromising, these techniques are new and currently haveonly been applied to high spatial resolution imagery. Itremains to be seen whether detailed testing can prove thatsimilar approaches applied to low or moderate spatialresolution data will allow burn severity to be mapped overthe full range of environmental conditions found acrossRussia. In the absence of such a remote sensing approach,we follow other recent studies by assuming a range ofpossible burn severities to estimate the minimum andmaximum levels of carbon emission from the 2001 fires.Specifically, we follow Conard and Ivanova (1997) andConard et al. (2002) in examining two scenarios, that burnsduring the season were dominated by severe burning conditions(50% of burnt area in crown fires, 30% in moderateseveritysurface fires, and 20% in low-severity surface fires)or moderate burning conditions (20% crown fires, 60%moderate-severity surface fires and 20% low-severity surfacefires). Conard et al. (2002) report that mean levels ofcarbon emission for crown fires, moderate-severity surfacefires, and low-severity surface fires are respectively 22.5,8.6, and 2.3 Mg/ha, based on weighted carbon storage indifferent biomass and forest litter components (Alexeyev &Birdsey, 1994; Alexeyev, Birdsey, Stakanov, & Korotkov,1995). Using these data with our VGT-based measurementsallows us to estimate carbon emissions over the 2001 fire season on a monthly basis (Fig. 9). Note that the correctionfactor derived from comparison between the VGT burnt areamap and the ETM+ data has been applied to our VGTmeasurements of monthly burned area shown in Table 4 andthat we include only areas of burnt forest in the calculation.Calculated carbon emissions for 2001 related to forestburning are 36.0 Mt for the moderate burning scenarioand 50.8 Mt for the severe burning scenario. Given theclimate prevalent in 2001, it seems more likely that moderateburning conditions predominated.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Perbandingan antara hubungan kami dan mereka disajikan
oleh Malamud et al. (1998) menunjukkan bahwa frequency- kami diukur
distribusi ukuran mirip dengan orang-orang dari kebakaran hutan lainnya
rezim, sementara nilai eksponen dekat dengan 1,0 berarti bahwa
kebakaran kecil dan besar berkontribusi sekitar sama dengan total
area yang terbakar (misalnya kebakaran dari daerah A terjadi kira-kira dua perintah
besarnya lebih sering daripada kebakaran ukuran 100A, sehingga kedua
berkontribusi sekitar sama dengan total areal yang terbakar). Tabel 5
menunjukkan kebakaran hutan dipetakan dikategorikan ke dalam empat ukuran
kelas, menunjukkan bahwa dalam kasus 2001 kebakaran dipetakan
oleh SPOT VGT, 9 file terbesar dan 2497 kebakaran terkecil
berkontribusi hampir sama dengan total areal yang terbakar. Namun,
ukuran ekstrim dari kebakaran terbesar berarti bahwa terbesar 1% dari
kebakaran berkontribusi 42% dari total area terbakar.
Selain analisis di atas, penggunaan kunci dari
kuasa hukum ditunjukkan pada Gambar. 8 adalah bahwa hal itu memungkinkan kita untuk memprediksi berapa
banyak api yang terbakar kurang dari 2 km2 individu cenderung terjadi pada tahun 2001 dan belum tidak dipetakan oleh kami
metodologi (yang membatasi deteksi kebakaran dari area 2 km2
atau lebih besar). Prediksi adalah bahwa akan ada 6554 kebakaran
lebih besar dari 1 km2, dan karena metodologi berbasis VGT kami
peta 2764 kebakaran yang lebih besar dari 2 km2, kami memperkirakan bahwa 3790
kebakaran memiliki luas 1-2 km2 telah terjawab oleh kami
SPOT VGT- metode berdasarkan. Kami tidak memprediksi kemungkinan
jumlah kebakaran lebih kecil dari 1 km2 karena Ricotta et al.
(2001) menunjukkan bahwa proses yang berbeda mungkin mengontrol
frekuensi dan ukuran ini kebakaran skala sub-kilometer
dari mengendalikan kebakaran yang lebih besar biasanya diamati oleh
VGT, yang berarti ekstrapolasi dari kuasa hukum kebakaran jauh
lebih kecil daripada yang diamati bisa menghasilkan sangat tidak akurat
perkiraan. Menurut hasil yang ditunjukkan pada Ricotta et al., Yang
frekuensi kebakaran sangat kecil akan, bagaimanapun, menjadi
signifikan lebih rendah dari yang diperkirakan oleh ekstrapolasi dari
distribusi frekuensi-ukuran, lanjut mendukung keputusan
untuk mengabaikan mereka dari analisis.
Menggunakan frekuensi ini Data-ukuran, kami memperkirakan sebenarnya
area yang terbakar di Federasi Rusia untuk tahun 2001 menjadi 41.782
km2 (diukur) dan 3790 km2 (diprediksi); membuat total
45.572 km2, dimana 75% terjadi di hutan. Menggunakan Persamaan.
(6) untuk menjelaskan meremehkan jelas dari daerah yang terbakar
dengan VGT bila dibandingkan dengan ETM + memberikan final
dikoreksi estimasi areal yang terbakar dari 51.546 km2, dengan 38.512
km2 di hutan dan 13.034 km2 di nonhutan. Ini setara dengan
0,5% dari total luas hutan dicatat dalam Federasi Rusia dengan database USGS Global Land Penutup
(Tabel 4;. Brown et al, 1999).
7. Perkiraan emisi karbon
Kami menggunakan pengukuran kami daerah terbakar bulanan untuk
memperkirakan emisi karbon langsung dari daerah
hutan Rusia terbakar pada tahun 2001. Isaev et al. (2002) dan
Redmond, Winne, Opitz, dan Mangrich (2002) memberikan
bukti baru bahwa keparahan luka bakar sendiri mungkin
terdeteksi dari penginderaan jauh. Namun, sementara sangat
menjanjikan, teknik ini baru dan saat ini telah
hanya diterapkan untuk citra resolusi spasial tinggi. Ini
masih harus dilihat apakah pengujian rinci dapat membuktikan bahwa
pendekatan serupa diterapkan spasial rendah atau sedang
data resolusi akan memungkinkan membakar keparahan untuk dipetakan lebih
lengkap kondisi lingkungan yang ditemukan di
Rusia. Dengan tidak adanya seperti pendekatan penginderaan jauh,
kita mengikuti studi terbaru lainnya dengan mengasumsikan berbagai
kemungkinan keparahan luka bakar untuk memperkirakan minimum dan
tingkat maksimum emisi karbon dari 2001 kebakaran.
Secara khusus, kita mengikuti Conard dan Ivanova (1997) dan
Conard et al. (2002) dalam memeriksa dua skenario, yang membakar
selama musim didominasi oleh kondisi parah terbakar
(50% dari areal yang terbakar dalam kebakaran mahkota, 30% di moderateseverity
kebakaran permukaan, dan 20% di murah keparahan kebakaran permukaan)
atau kondisi terbakar moderat (20% kebakaran mahkota, 60%
moderat-beratnya permukaan kebakaran dan 20% permukaan rendah-tingkat keparahan
kebakaran). Conard et al. (2002) melaporkan bahwa berarti tingkat
emisi karbon untuk kebakaran mahkota, moderat-beratnya permukaan
kebakaran, dan rendah-beratnya permukaan kebakaran masing-masing 22,5,
8,6, dan 2,3 Mg / ha, berdasarkan penyimpanan karbon tertimbang di
biomassa dan hutan komponen sampah yang berbeda (Alexeyev &
Birdsey, 1994; Alexeyev, Birdsey, Stakanov, & Korotkov,
1995). Menggunakan data ini dengan pengukuran berbasis VGT kami
memungkinkan kita untuk memperkirakan emisi karbon selama musim kebakaran 2001 secara bulanan (Gambar. 9). Perhatikan bahwa koreksi
faktor yang berasal dari perbandingan antara VGT dibakar daerah
peta dan ETM + di data yang telah diterapkan untuk VGT kami
pengukuran daerah yang terbakar bulanan ditunjukkan pada Tabel 4 dan
bahwa kita hanya mencakup wilayah hutan yang terbakar dalam perhitungan.
Emisi karbon Dihitung untuk 2001 terkait dengan hutan
terbakar adalah 36,0 Mt untuk skenario pembakaran moderat
dan 50,8 Mt untuk skenario terbakar parah. Mengingat
iklim lazim pada tahun 2001, tampaknya lebih mungkin bahwa moderat
kondisi pembakaran didominasi.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: